Expand the following: \begin{align} (x+1)^2 &= \cssId{Step1}{(x+1)(x+1)} \\[3px] &\cssId{Step2}{{} = x(x+1) + 1(x+1)} \\[3px] &\cssId{Step3}{{} = (x^2+x) + (x+1)} \\[3px] &\cssId{Step4}{{} = x^2 + (x + x) + 1} \\[3px] &\cssId{Step5}{{} = x^2 + 2x + 1} \end{align}
Solve for $x$ in the equation: \begin{align} 2x + 5 &= 15 \\[3px] &\cssId{Step6}{2x = 15 - 5} \\[3px] &\cssId{Step7}{2x = 10} \\[3px] &\cssId{Step8}{x = 5} \end{align}
Find the derivative of: \begin{align} f(x) &= x^3 - 4x^2 + 6x - 2 \\[3px] &\cssId{Step9}{f'(x) = 3x^2 - 8x + 6} \end{align}
Compute the integral: \begin{align} \int (3x^2 - 8x + 6) \,dx \\[3px] &\cssId{Step10}{= \frac{3}{3}x^3 - \frac{8}{2}x^2 + 6x + C} \\[3px] &\cssId{Step11}{= x^3 - 4x^2 + 6x + C} \end{align}