Expand the following: (x+1)2=(x+1)(x+1)=x(x+1)+1(x+1)=(x2+x)+(x+1)=x2+(x+x)+1=x2+2x+1
Solve for x in the equation: 2x+5=152x=15−52x=10x=5
Find the derivative of: f(x)=x3−4x2+6x−2f′(x)=3x2−8x+6
Compute the integral: ∫(3x2−8x+6)dx=33x3−82x2+6x+C=x3−4x2+6x+C