This is an example: $$x+1=\frac{x}{3}$$ \begin{equation*} y=\frac{\sum_{i=0}^{n}(x_{i}^{2})}{x_{i}}\label{eq:3} \end{equation*}
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\)
This is Equation  \ref{eq:1} here is a lebeled equation:$$x+1\over\sqrt{1-x^2}\label{eq:1}$$
\begin{align*} x&=y_1-y_2+y_3-y_5-\dots && \text{by \eqref{eq:1}}\\ &=y'\circ y^* && \text{(by \eqref{eq:1})}\\ & y{0}y' *\text{by Axiom1.} \end{align*}
This is another equation\ref{ref3} \begin{align} a &=b\label{ref3}\\ y &=c+d \end{align}