
Web Search Engines and Linear Algebra

Γκόλφος Γεώργιος

April 25, 2021

1 Introduction

Nearly all the major Web search engines today use
link analysis to improve their search results. That’s
exciting for linear algebraists because link analysis,
the use of the Web’s hyperlink structure, is built from
fundamentals of matrix theory. Link analysis and
its underlying linear algebra have helped revolution-
ize Web search, somuch so that the pre-link analysis
search (before 1998) pales in comparison to today’s
remarkably accurate search.

HITS [13] and PageRank [2, 3] are two of the most
popylar link analysis algorithms. Both were devel-
oped around 1998 and both have dramatically im-
proved the search business. In order to appreciate
the impact of link analysis, recall for a minute the
state of search prior to 1998. Because of the immense
number of pages on the Web, a query to an engine of-
ten produced a very long list of elevant pages, some-
times thousands of pages long. A user had to sort
carefully through the list to find the most relevant
pages. The order of presentation of the pages was
little help because spamming was so easy then. In
order to trick a search engine into producing rankings
higher than normal, spammers used meta-tags liber-
ally, claiming their page used popular search terms
that never appeared in the page. Meta-tags became
useless for search engines. Spammers also repeated
popular search terms in invisible text (white text on
a white background) to fool engines.

2 The HITS Algorithm

HITS[13], a link analysis algorithm developed by Jon
Kleinberg from Cornell University during his post-

doctoral studies at IBM Almaden, aimed to focus
this long, unruly query list. The HITS algorithm
is based on a pattern Kleinberg noticed among Web
pages. Some pages serve as hubs or portal pages,
i.e., pages with many outlinks. Other pages are au-
thorities on topics because they have many inlinks.
Kleinberg noticed that “good hubs seemed to point
to good authorities and good authorities were pointed
to by good hubs.” So he decided to give each page
i both an hub score hi and an authority score ai.
In fact, for every page i he defined the hub score at

iteration k, h
(k)
i , as

a
(k)
i =

∑
j:eji∈E

h
(k−1)
j (1)

and

h
(k)
i =

∑
j:eij∈E

a
(k)
j for k=1,2,3,. . . , (2)

where eij represents a hyperlink from page i to page
j and E is the set of hyperlinks. To compute the
scores for a page , he started with uniform scores for
all pages, i.e.,

h
(1)
i = 1/n (3)

and

a
(1)
i = 1/n (4)

where n is the number of pages in a so-called neigh-
borhood set for the query list. the neighborhood set
consists of all pages in the query list plus all pages
pointing to or from the query pages. Depending on
the query, the neightborhood set could contain just
a hundred pages or a hundred thousand pages. (The
neighborhood set allows latent semantic associations

1

to be made.) The hub and authority scores are itera-
tively refined until convergence to stationary values.

Using linear algebra we can replace the summation
equations with matrix equations. Let h and a be
column vectors holding the hub and authority
scores. Let L be the adjacency matrix for the
neighborhood set. That is, Lij = 1 if page i links to
page j. and 0, otherwise. These definitions show that

ak = LTh(k−1) and h(k) = La(k). (5)

Using some algebra, we have

a(k) = LTLa(k−1) (6)

h(k) = LLTh(k−1). (7)

These equations make it clear that Kleinberg’s algo-
rithm is really the power method applied to the pos-
itive semi-definite matrices LTL and LLT . LTL is
called the hub matrix and LLT is the authority ma-
trix. Thus, HITS amounts to solving the eigenvector
problems LTLa = λ1a and LLTh = λ1h, where λ1
is the largest eigenvalue of LTL(andLLT), and a and
h are corresponding eigenvectors.

While this is the basic linear algebra required by
the HITS method, there are many more issues to be
considered. Fore example, important issues include
convergence, existence, uniqueness, and numerical
computation of these scores [5,7,14]. Several modi-
fications to HITS have been suggested, each bringing
various advantages and disadvantages [4,6,8]. A vari-
ation of kleinberg’s HITS concept is at the base of the
search engine TEOMA (http://www.teoma.com),
which is owned by Ask Jeeves, Inc.

3 The PageRank Algorithm

PageRank, the second link analysis algorithm from
1998, is the heart of Google. Both PageRank and
Google were conceived by Sergey Brin and Larry
Page while they were computer science graduate
students at Stanford University. Brin and Page use
a recursive scheme similar to Kleinberg’s. Their

original idea was that a “page is important if its
pointed to by other important pages”. That is,
they decided that the importance of your page (its
PageRank score) is determined by summing the
PagerRanks of all pages that point to yours. In
building a mathematical definition of PageRank,
Brin and Page also reasoned that when an important
page points to several places, its weight (PageRank)
should be distributed proportionately. In other
words, if YAHOO! points to your Web page, that’s
good, but you shouldn’t receive the full weight of
YAHOO! because they point to many other places.
If YAHOO! points to 999 pages in addition to
yours, then you should only get credit for 1/1000 of
YAHOO!’s PageRank.

This reasoning led Brin and Page to formulate a
recursive definition PageRank. They defined

r
(k−1)
i =

∑
j∈Ii

r
(k)
j

|Oj |
, (8)

where r
(k)
i is the PageRank of page i at iteration k,

Ii is the set of pages pointing into page i and |Oj |
is the number of outlinks from page j. Like HITS,
PageRank starts with a uniform rank for all pages,
i.e., r0i = 1/n and successively refines these scores,
where n is the total number of Web pages.

Like HITS, we can write this process using matrix
notation. Let the row vector π(k)T be the PageR-
ank vector at the kth iteration. As a result, the
summation equation for PageRank can be written
compactly as

π(k+1)T = π(k)TH,

where H is a row normalized hyperlink matrix, i.e.,
hij = 1/|Oi|, if there is a link from page i to page j,
and 0, otherwise. Unfortunately, this iterative pro-
cedure has convergence problems-it can cycle or the
limit may be dependent on the starting vector.

To fix these problems, Brin and Page revised their
basic PageRank concept. Still using the hyperlink
structure of the Web, they build an irreducible aperi-
odic Markov chain characterized by a primitive (irre-

2

ducible with only one eigenvalue on the spectral cir-
cle) transition probability matrix. The irreducibility
guarantees the existence of a unique stationary distri-
bution vector πT , which becomes the PageRank vec-
tor. The power method with a primitive stochastic
iteration matrix will always converge to πT indepen-
dent of the starting vector, and the asymptotic rate
of convergence is governed by the magnitude of the
subdominant eigenvalue λ2 of the transition matrix
[19].

Here’s how Google turns the hyperlink structure of
the Web into a primitive stochastic matrix. If there
are n pages in the Web, let H be the n × n ma-
trix whose element hij is the probability of moving
from page i to page j in one click of the mouse. The
simplest model is to take hij = 1/|Oi|, which means
that starting from any Web page we assume that it
is equally likely to follow any of the outgoing links to
arrive at another page.

However, some rows of H may contain all zeros, so
H is not necessarily stochastic. This occurs whenever
a page contains no outlinks; many such pages exist on
the Web and are called “dangling nodes”. An easy fix
is to replace all zero rows with eT/n, where eT is the
row vector of all ones. The revised (now stochastic)
matrix S can be written as a rank-one update to the
sparse H. Let a be the dangling node vector in which

ai =

{
1 if page i is a dangling node,

0 otherwise.
(9)

Then, S = H + aeT/n.
Actually, any probability vector pT > 0 with pT e = 1
can be used in place of the uniform vector eT/n.

We’re not home yet because the adjustmnet
that produces the stochastic matrix S isn’t enough
to insure the existence of a “unique” stationary
distribution vector (needed to make PageRank well
defined). Irreducibility on top of stochasticity is
required. But the link structure of the Web is
reducible-the Web graph is not strongly connected.
Consequently, an adjustment to make S irreducible
is needed. This last adjustment brings us to “Google
matrix”, which is defined to be

G = aS + (1− a)E,

where 0 ≤ a ≤ 1 and E = eeT/n. Google eventually
replaced the uniform vector eT/n with a more gen-
eral probability vector vT (so that E = evT) to allow
them the flexibility to make adjustments to PageR-
anks as well as to personalize them. See [10,15] for
more about the personalization vector vT .

Because G is a convex combination of the two
stochastic matrices S and E, it follow that G is both
stochastic and irreducible. Furthermore, every node
is now directly connected to every other node (al-
though the probability of transition may be very
small in some cases), so G¿0. Consequently, G is
a primitive matrix, and this insures that the power
method π(k+1)T = π(k)TG will converge, indepen-
dent of the starting vector, to a unique stationary
distribution πT [19]. This is the mathematical part
of Google’s PageRank vector.

There are more to discuss about Google’s Power
method which is a computational method of choice
and this brief introduction describes only the mathe-
matical component of Google’s ranking system. How-
ever, it’s known that there are non-mathematical
”metrics” that are also considered when Google re-
sponds to a query, so the results seen by a user are
in fact PageRank tempered by other metrics.

4 References

References

[1] Jon Kleinberg, Authoritative sources in an hyper-
linked environment. Journal of the ACM, 46, 1999

[2] Sergey Brin and Lawrence Page. The anatomy of
large-scale hypertextual web search engine. Com-
puter networks and ISDN System, 33:107-117,
1998.

[3] Michael W.Berry and Murray Browne.
Understanding Search Engines: Mathemati-
cal Modeling ans Text Retrieval.

[4] Sergey Brin, Lawrence Page, R. Motwami, and
Terry Winograd. The PageRank citaton ranking:
bringing order to the web. Technical report, Com-

3

puter Science Department, Stanford University,
1998

4

